Genetically engineered single-chain Fvs of human immunoglobulin against hepatitis C virus nucleocapsid protein derived from universal phage display library.
نویسندگان
چکیده
Specific single-chain Fvs (scFvs) of human immunoglobulin that specifically recognized the recombinant hepatitis C virus (HCV) nucleocapsid protein were isolated from a large phage display antibody library. This universal library of genetically engineered filamentous phagemids displayed random pairings of the variable regions of both human heavy and light chain immunoglobulin in the scFv format. Specific clones were isolated by affinity selection with purified recombinant HCV protein fused to glutathione-S-transferase (GST). The GST-specific clones were excluded by blocking the phagemid library with GST prior to the selection. After 4 rounds of selection, the HCV-reactive clones were enriched by a factor of 100,000. About 4% and 9% of the clones from rounds 4 and 5, respectively, specifically reacted to the HCV portion of the fusion protein in an enzyme immunoassay. The specificity was confirmed by specific binding inhibition with plasma from an HCV-infected individual. Nucleotide sequence analysis of 3 HCV-specific clones indicated that all 3 clones contained an almost identical VH gene sequence which was derived from the VH3 germline gene family. These clones had different VL gene sequences of the lambda type. There were some differences between nucleotide and amino acid sequences of the HCV-specific scFv genes and those of the closest matched germline genes, indicating the presence of somatic mutation. This study illustrated the feasibility of using antibody engineering technology with the universal phage display library to isolate human antibodies with predefined specificity to important microbial pathogen which may be useful for future therapeutic purpose.
منابع مشابه
Construction of Human Recombinant ScFv Phage Libraries from the Advanced Stages of Breast Carcinoma Patients
Advances in the field of antibody engineering, and the emergence of powerful screening technology such as filamentous phage display allowed to generate fully human antibodies with high affinities against virtually any desired target from immune or even naIve human repertoires. As a result, the immunogenicity problems related to applications of nonhuman based recombinant antibodies as therapeuti...
متن کاملHigh-level secretion of recombinant monomeric murine and human single-chain Fv antibodies from Drosophila S2 cells
Single-chain variable fragment (scFvs) antibodies are small polypeptides (∼26 kD) containing the heavy (V(H)) and light (V(L)) immunoglobulin domains of a parent antibody connected by a flexible linker. In addition to being frequently used in diagnostics and therapy for an increasing number of human diseases, scFvs are important tools for structural biology as crystallization chaperones. Althou...
متن کاملIsolation and Characterization of Novel Phage Displayed scFv Fragment for Human Tumor Necrosis Factor Alpha and Molecular Docking Analysis of Their Interactions
Tumor necrosis factor alpha (TNF-α) expression amplifies to excess amounts in several disorders such as rheumatoid arthritis and psoriasis. Although, Anti-TNF biologics have revolutionized the treatment of these autoimmune diseases, formation of anti-drug antibodies (ADA) has dramatically affected their use. The next generation antibodies (e.g. Fab, scFv) have not only reduced resulted immunoge...
متن کاملA large semi-synthetic single-chain Fv phage display library based on chicken immunoglobulin genes
BACKGROUND Antibody fragments selected from large combinatorial libraries have numerous applications in diagnosis and therapy. Most existing antibody repertoires are derived from human immunoglobulin genes. Genes from other species can, however, also be used. Because of the way in which gene conversion introduces diversity, the naïve antibody repertoire of the chicken can easily be accessed usi...
متن کاملHuman recombinant antibodies specific for hepatitis C virus core and envelope E2 peptides from an immune phage display library.
Hepatitis C virus (HCV) is the aetiological agent responsible for most cases of non-A non-B hepatitis. Hepatitis C is a disease of clinical importance because of its high infection rate in blood donors and its persistence as chronic infections which may lead to cirrhosis and hepatocellular carcinoma in the long term. The variability of the HCV genome has posed difficulties in serological detect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Asian Pacific journal of allergy and immunology
دوره 16 1 شماره
صفحات -
تاریخ انتشار 1998